ST EDWARD'S OXFORD

13+ SCHOLARSHIP EXAMINATION 2012

MATHEMATICS
 Paper 1

1 hour

Name: \qquad

There are 60 marks available.
Calculators are allowed.
Write all answers, including your workings, in this booklet.

1. Circle all of the fractions below which are smaller than $\frac{\mathbf{1}}{9}$
$\frac{1}{10}$
$\frac{4}{9}$
$\frac{1}{2}$
$\frac{1}{100}$
$\frac{1}{8}$
(b) To the nearest per cent, what is $\frac{\mathbf{1}}{\mathbf{9}}$ as a percentage? Circle the nearest value.
$0.9 \% \quad 9 \% \quad 10 \% \quad 11 \% \quad 19 \%$
1 mark
(c) Complete the sentences below:
$\frac{1}{9}$ is half of
$\frac{1}{9}$ is two thirds of \qquad

There are ninths in $6 \frac{1}{3}$
2. The ancient Egyptians used fractions, but only unit fractions.
$\frac{1}{3}, \frac{1}{8}, \frac{1}{5}$ are all examples of unit fractions; the numerator must be 1 and the denominator is an integer greater than 1.

For $\frac{3}{4}$, they wrote the sum $\frac{1}{2}+\frac{1}{4}$
(a) For what fraction did they write the sum $\frac{1}{2}+\frac{1}{5}$? Show your working.
(b) They wrote $\frac{9}{20}$ as the sum of two unit fractions. One of them was $\frac{1}{4}$

What was the other? You must show your working.

3. Solve these equations:

a) $75+2 t=100-2 t$
b) $7(5 y-3)-10=2(3 y-5)-3(5-7 y)$
c) $\frac{x}{3}+\frac{10-2 x}{2}=3$
\qquad
4. (a) A rectangle is 3 a units long and 5 b units wide. Write a simplified expression for the area and the perimeter of this rectangle.

Area: \qquad

Perimeter: \qquad
(b) A different rectangle has area $12 a^{2}$ and perimeter 14a. What are the dimensions of this rectangle?

Dimensions: \qquad by \qquad
5. On a farm many years ago the water tanks were filled using a bucket from a well.
(a) The table shows the numbers of buckets, of different capacities, needed to fill a tank of
capacity 2400 pints. Complete the table:

Capacity of bucket (pints)	8	10	12	15	16		
Number of buckets			200		150	100	80

(b) Write an equation using symbols to connect \mathbf{T}, the capacity of the tank, \mathbf{B}, the capacity of a bucket, and \mathbf{N}, the number of buckets.
(c) Now tanks are filled through a hosepipe connected to a tap. The rate of flow through the hosepipe can be varied. The tank of capacity $\mathbf{4 0 0 0}$ litres fills at a rate of $\mathbf{1 2 . 5}$ litres per minute. How long in hours and minutes does it take to fill the tank? Show your working.
\qquad hours \qquad minutes
6. In one week James watches television for $\mathbf{2 6}$ hours. In that week, he watched television for the same length of time on Monday, Tuesday, Wednesday and Thursday. On each of Friday, Saturday and Sunday, he watched television for twice as long as on Monday. How long did he spend watching television on Saturday? Write your answer in hours and minutes.
\qquad hours \qquad minutes
7. In the diagram (NOT TO SCALE), side AB is the same length as side AC .

Side BD is the same length as side BC. Calculate the value of X Show your working.

$x=$ \qquad
8. A window is made with two pieces of glass - one is semi-circular, the other is square.

The area of the square is $1 \mathrm{~m}^{2}$. What is the approximate area of the semi-circle? Give your answer in cm^{2} to the nearest whole number.
9. (a) Estimate the answer to $\frac{8.62+22.1}{5.23}$

Give your answer to $\mathbf{1}$ significant figure.

1 mark
(b) Estimate the answer to $\frac{28.6 \times 24.4}{5.67 \times 4.02}$
10. This is a series of patterns with grey and white tiles.

pattern number

The series of patterns continues by adding
 each time.
(a) Complete this table:

pattern number	number of grey tiles	number of white tiles
5		
16		
n		

4 marks
(b) Write an expression to show the total number of tiles in pattern number n.

Simplify your expression.
11. (a) Each of these calculations has the same answer, 60. Fill in the gaps:

$2.4 \times \mathbf{2 5}=\mathbf{6 0}$	$\mathbf{6 0 0} \div \mathbf{1 0}=\mathbf{6 0}$
$0.24 \times \ldots \ldots \ldots=60$	$6 \div \ldots \ldots \ldots \ldots=60$
$2400 \times \ldots \ldots \ldots=60$	$0.06 \div \ldots \ldots \ldots=60$

12. (a) Find the values of a and b when $\boldsymbol{p}=10$

$$
a=\frac{3 p^{3}}{2}
$$

$$
a=
$$

\qquad
1 mark
$b=\frac{2 p^{2}(p-3)}{7 p}$
$b=$ \qquad
(b) Simplify this expression as fully as possible:

$$
\frac{3 c d^{2}}{5 c d}
$$

13. (a) \boldsymbol{m} is an odd number. Which of the numbers below must be even, and which must be odd? Write ‘odd’ or 'even' under each one.

(b) \boldsymbol{m} is an odd number. Is the number $\frac{\boldsymbol{m}+\mathbf{1}}{\mathbf{2}}$ odd, or even, or is it not possible to tell?

odd	

 not possible to tell

Explain your answer.
14. Solve these simultaneous equations using an algebraic method.

$$
\begin{aligned}
& 4 x+3 y=21 \\
& 2 x+y=8
\end{aligned}
$$

You must show your working.

$$
x=\ldots . ~ y=~ . ~ y=~
$$

\qquad
15. Write the next two terms in each of these sequences, and give the rule for the $\boldsymbol{n t h}$ term:

$$
4,8,12,16, \ldots . ., \ldots \ldots . . \quad \text { nth term: }
$$

\qquad
$4,9,16,25, \ldots . ., \ldots \ldots . . \quad$ nth term: \qquad
16. To cover a distance of 10 km , Jacob runs some of the way at $15 \mathrm{~km} / \mathrm{hr}$, and walks the rest of the way at $5 \mathrm{~km} / \mathrm{hr}$. His total journey time was 1 hour. How far did Jacob run?
17. David puts five cards face down on a table. All have the same design on the back - on the other side, one shows a circle, two show squares, and two show triangles. He turns two cards over. What is the probability that at least one of the cards is a square?

